- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Marom, Noa (1)
-
Moussa, Jonathan E (1)
-
Tom, Rithwik (1)
-
Wui, Jose (1)
-
Yang, Yi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Polymorphism in molecular crystals influences their properties and performance. Crystal structure prediction (CSP) can help explore the crystal structure landscape and discover potentially stable polymorphs computationally. We present a new version of the Genarris open-source code, which generates random molecular crystal structures in all space groups and applies physical constraints on intermolecular distances. The main new feature in Genarris 3.0 is the ``Rigid Press algorithm, which uses a regularized hard-sphere potential to compress the unit cell and achieve a maximally close-packed structure based on purely geometric considerations without performing any energy evaluations. In addition, Genarris 3.0 is interfaced with machine-learned interatomic potentials (MLIPs) to accelerate the exploration of the potential energy landscape. We present a new clustering and down-selection workflow that employs the MACE-OFF23(L) MLIPs to perform geometry optimization and energy ranking in the early stages. We use Genarris 3.0 to successfully predict the structure of six targets: aspirin, Target I and Target XXII from previous CSP blind tests, and the energetic materials HMX, CL-20, and DNI. We further analyze the performance of MACE-OFF23(L) compared to dispersion-inclusive density functional theory (DFT) for geometry relaxation and energy ranking. We find significant variability in the performance of MACE-OFF23(L) across chemically diverse targets with particularly poor performance for energetic materials, which is mitigated by our clustering and down-selection procedure. Genarris 3.0 can thus be used effectively to perform CSP and to generate molecular crystal datasets for training ML models.more » « lessFree, publicly-accessible full text available June 30, 2026
An official website of the United States government
